# Arene-alkyne derivatives of $\left.\mathrm{Ru}_{6} \mathrm{ClCO}\right)_{17}$ : synthesis and structure of $\left.\mathrm{Ru}_{6} \mathrm{ClCO}\right)_{12}\left(\eta^{6}\right.$-arene $)\left(\mu_{3}-\mathrm{C}_{2} \mathrm{Me}_{2}\right)\left(\right.$ arene $\left.=\mathrm{C}_{6} \mathrm{H}_{6-n} \mathrm{Me}_{n}, n=0-3\right)$ and $\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{12}\left(\mu_{3}-\mathrm{C}_{16} \mathrm{H}_{16}\right)\left(\mu_{3}-\mathrm{C}_{2} \mathrm{Me}_{2}\right)$ 

Ruth L. Mallors ${ }^{\text {a }}$, Alexander J Blake ${ }^{2}$, Simon Parsons ${ }^{\text {a }}$, Brian F.G. Johnson ${ }^{\text {b.* }}$, Paul J. Dyson ${ }^{\text {c }}$, Dario Braga ${ }^{\text {d }}$, Fabrizia Grepioni ${ }^{\text {a }}$, Emilio Parisini ${ }^{\text {a }}$<br>"Department of Chemistry. Th. University of Edinhurgh, West Mains Road. Edinburgh EH9 3IJ. UK<br>${ }^{\text {b }}$ Unicersity Chemical Laboratories, Lensfirld Road, Cambridge CB2 JEW, UK<br>${ }^{\text {T}}$ Department of Chemistry, Imperial College of Science, Technology and Medicine. Sowth Kensington, London SW7 2AY, UK<br>${ }^{4}$ Diparzimeno di Chimica G. Cianician, Universina di Bologna. Via Selai 2. 40126 Bologna. Raly

Received 10 July 1996; revised 28 August 1996


#### Abstract

The arene-alkyne clusters $\left.\mathrm{Ru}_{6} \mathrm{ClCO}\right)_{12}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\left(\mu_{3}-\mathrm{C}_{2} \mathrm{Me}_{2}\right)$ 1. $\left.\mathrm{Ru}_{6} \mathrm{CCO}\right)_{12}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}^{2}\left(\mu_{3} \mathrm{C}_{2} \mathrm{Me}_{2}\right) \text { 2, } \mathrm{Ru} \mathrm{Cl}_{6} \mathrm{CCO}\right)_{52}\left(\eta^{6}-\right.$ $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}_{2}-1,3\right)-\left(\mu_{3}-\mathrm{C}_{2} \mathrm{Me}_{2}\right) 3_{1} \mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{12}\left(\mathrm{n}^{6}-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Me}_{3}-1,3,5 \mathrm{~K}_{\mu_{3}} \mathrm{C}_{3} \mathrm{Me}_{2}\right) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} 4$ and $\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{12}\left(\mu_{3}-\mathrm{C}_{16} \mathrm{H}_{16}\right)\left(\mu_{3} \mathrm{C}_{2} \mathrm{Me}_{2}\right)$. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me} 5$ have heen prepared and characterised. The molecular structures of $1,3,4$ and 5 have been established in the solid strse by single crystal X-ray diffraction, and their crystallographic packing motifs analysed.


Keywords: Ruthenium; Cluster; Arene; Alkyne

## 1. Introduction

The study of the synthesis and reactivity of transition metal carbonyl clusters with small organic molecules has received considerable attention in recent years; review articles of particular relevance to this paper are listed in Refs. [1,2]. In our work we have been particularly interested in the preparation of clusters with $\mu_{3}$ face-capping arenes as well as the more common $\eta^{6}$ terminal bonding mode [2]; key papers include those listed in Refs. [3,4]. The underlying factors which govern the bonding mode adopted have also been explored, and it has been demonstrated that interchange between the two extreme bonding modes may be achieved, by thermal [5], photolytic [6] or chemical means [7]. These studies prompted us to examine the reactions of some hexaruthenium arene clusters with alkynes, since the related reaction with the trinuclear cluster $\mathrm{M}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\right.$ $\left.\mathrm{C}_{6} \mathrm{H}_{6}\right)(\mathrm{M}=\mathrm{Ru}$ and Os$)$ results in the migration of the benzene from the $\mu_{3}$ to the $\eta^{6}$ terminai site [7].

[^0]
## 2. Results and discussion

The method used to prepare the arene-alkyne chusters described in this paper involves the initial preparation of the arene cluster $\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{1+}\left(\boldsymbol{\eta}^{6}\right.$-arene), followed by the subsequent substimution of two of the 14 carbonyl ligands by the appropriate alkyne. The arene clusters $\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{14}$ (arene) (arene $=\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}$, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}_{2}-1.3$ and $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Me}_{3}-1,3,5$ ) and $\mathrm{Ru} \mathrm{u}_{6} \mathrm{C}(\mathrm{CO})_{14}\left(\mu_{3}-\mathrm{C}_{16} \mathrm{H}_{16}\right)$ have been reported previously and were prepared by the literature methods [8,9]. The $\mathrm{C}_{10} \mathrm{H}_{16}$ ( 2.2 ]paracyclophame) denvative differs from the others in the manner in which the arene bonds to the cluster. In this cluster coordination is over a trimetal face, whilst in the others the arene bonds to a siagle metal atom. The reactivity of these arene chusters towards a variety of ligands has previously been reported, and generally involves chemical activation by removal of CO as $\mathrm{CO}_{2}$ using stoichiometric amounss of trimethylamine N -oxide ( $\mathrm{Me}_{3} \mathrm{NO}$ ) [10,1I]. Using this procedure alkynes can also be introduced into these clusters.

Treatment of $\mathrm{Ru}_{6} \mathbf{C}(\mathrm{CO})_{1+}$ (arene) with a 2 molar


Scheme 1. The synthesis of compounds 1-5. Reagents and conditions: (i) but-2-yne/2 equiv. $\mathrm{Me}_{3} \mathrm{NO}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
equiv. of $\mathrm{Me}_{3} \mathrm{NO}$ in the presence of but-2-yne results in the formation of $\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{12}($ arene $)\left(\mu_{3}-\mathrm{C}, \mathrm{Me},\right)$. in which two carbonyl ligands have been substituted by a face-capping dimethylalkyne ligand. By this route it was possible to prepare $\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{12}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\left(\mu_{3}-\right.$ $\mathrm{C}_{2} \mathrm{Me}_{2}$ ) 1, $\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{12}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}\right)\left(\mu_{3}-\mathrm{C}_{2} \mathrm{Me}_{2}\right) 2$, $R u_{6} \mathrm{C}(\mathrm{CO})_{12}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}_{2}-1,3\right)\left(\mu_{3}-\mathrm{C}_{2} \mathrm{Me}_{2}\right) \quad 3$. $\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{\mathbf{1 2}_{2}}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Me}_{3}-1,3,5\right)\left(\mu_{3}-\mathrm{C}_{2} \mathrm{Me}_{2}\right) 4$ and $\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{12}\left(\mu_{3}-\mathrm{C}_{16} \mathrm{H}_{16}\right)\left(\mu_{3}-\mathrm{C}_{2} \mathrm{Me}_{2}\right) 5$ in moderate yield (Scheme 1). Purification of these clusters was achieved chromatographically on silica using dichloromethane-hexane as eluent.

The spectroscopic data for compounds 1-5 are given in Table 1. The infrared spectra ( $\nu_{\mathrm{co}}$ ) of 1-4 are very similar, while that of 5 is quite different. This reflects the different bonding mode of the [2.2]paracyclophane ligand in 5 compared with the arene ligands in the remaining clusters. The mass spectra of all the compounds show parent peaks at values close to the calcu-
lated masses. Peaks corresponding to the sequential loss of several carbonyl ligands are also observed in all the spectra. The $H$ NMR spectra of compounds 1-5 contain peaks which may readily be assigned to the aromatic ring and the alkyne ligand. In each compound the face-capping dimethylalkyne ligand gives rise to a singlet resonance in the range $2.86-2.89 \mathrm{ppm}$ for $\mathbf{1 - 4}$ and at 3.07 ppm for 5 . The arene ligands in clusters $\mathbf{1 - 4}$ yield signals that are entirely consistent with those expected. In 5 , the $\mu_{3}-[2.2]$ paracyclophane gives rise to four resonances at $7.45,3.41,3.30$ and 2.79 ppm . The signal at 7.45 ppm is a singlet and corresponds to the $\mathrm{C}-\mathrm{H}$ protons of the uncoordinated ring. The resonance at 3.41 ppm is also a singlet and may be assigned to the $\mathrm{C}-\mathrm{H}$ protons of the $\mu_{3}$-coordinated ring. The two other resonances are both multiplets and correspond to the $\mathrm{CH}_{2}$ protons of the aliphatic bridges.

Compound 1 has also been prepared by an alternative mute, in which the alkyne ligand is first introduced into the cluster followed by the introduction of the benzene ligand. Reaction of the previously reported cluster $\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{15}\left(\mu_{3}-\mathrm{C}_{2} \mathrm{Me}_{2}\right)$ [12], with 2 molar equiv. of $\mathrm{Me}_{3} \mathrm{NO}$ in the presence of cyclohexa-1.3-diene, results in the formation of 1 in moderate yield. Cyclohexa-1,3diene as a precursor to benzene has been used in cluster chemistry on numerous occasions, and involves the initial coordination of the diene to the cluster unit followed by dehydrogenation to afford the coordinated benzene molecule [4].

In all known examples of clusters based on the $\mathrm{Ru}_{6} \mathrm{C}$ skeleton, in which two arene ligands are present. the arenes either both adopt the $\eta^{6}$ bonding mode (two isomers) or one $\eta^{6}$ and one $\mu_{3}$ bonding mode [13]. For the compounds described in this paper, the bonding mode adopted by the arene in the precursor does not undergo any alteration on replacement of the carbonyls by the incoming alkyne. In the light of previous studies this is not particularly surprising in the case of the simple arene clusters 1-4. However, in 5 both the [2.2]paracyclophane and alkyne ligands adopt $\mu_{3}$ coordination modes. The reason for this is not certain, and migration of the $\mu_{3}-\mathrm{C}_{16} \mathrm{H}_{16}$ ligand to a terminal bond-

Table 1
Spectroscopic data for compounds 15

| Compound | IR $\left(\mathrm{CH}_{3} \mathrm{Cl}_{2}\right) p(\mathrm{CO})\left(\mathrm{cm}^{-1}\right)$ | ${ }^{1} \mathrm{H}$ NMR (CDCl ${ }_{3}$ ) (ppm) | MS \#/ |
| :---: | :---: | :---: | :---: |
| 1 | $\begin{aligned} & 2057(\mathrm{~m}), 2019(\mathrm{~s}), 201 \mathrm{ks}), \\ & 1996(\mathrm{~s}, \mathrm{br}), 1958(\mathrm{w}, \mathrm{br}) .1938(\mathrm{vw}) \end{aligned}$ | $5.79(\mathrm{~s}, 6 \mathrm{H}), 2.89(\mathrm{~s}, 6 \mathrm{H})$ | 1085 (1086) |
| 2 | $\begin{aligned} & \text { 2056(m), 2018(s). 2010(s). } \\ & 1996(\mathrm{~s}, \mathrm{br}) .1956(\mathrm{w}, \mathrm{br}) \end{aligned}$ | $\begin{aligned} & 5.82(\mathrm{~m}, 2 \mathrm{H}), 5.70(\mathrm{ml}, 3 \mathrm{H}), \\ & 2.88(\mathrm{~s}, 6 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) \end{aligned}$ | 1101 (1102) |
| 3 | $\begin{aligned} & 2056(\mathrm{~m}), 2017(\mathrm{~s}) .2009(\mathrm{~s}) . \\ & 1996(\mathrm{~s}, \mathrm{br}), 1954(\mathrm{w}, \mathrm{br}), 1934(\mathrm{vw}) \end{aligned}$ | $\begin{aligned} & 5.80(\mathrm{~m}, 2 \mathrm{H}), 5.72(\mathrm{~m}, 1 \mathrm{H}) \\ & 5.46(\mathrm{~s} .1 \mathrm{H}), 2.88(\mathrm{~s}, 6 \mathrm{H}), 2.40(\mathrm{~s} .6 \mathrm{H}) \end{aligned}$ | 1113 (1114) |
| 4 | $\begin{aligned} & 2057(\mathrm{~m}), 2019(\mathrm{~s}), 2011(\mathrm{~s}), \\ & 1996(\mathrm{~s} . \mathrm{br}), 1957(\mathrm{w}, \mathrm{br}) .193 \mathrm{k}(\mathrm{vw}) \end{aligned}$ | 5.71(s, 3H), 2.39(s, 9H) . $2.86(\mathrm{~s}, 6 \mathrm{H})$ | 1129 (1128) |
| 5 | $\begin{aligned} & 2068(\mathrm{~m}) .2056(\mathrm{w}), 2029(\mathrm{sh}) \\ & 2017(\mathrm{vs}) .2003(\mathrm{sh}) .1984(\mathrm{w}, \mathrm{br}) .1940(\mathrm{v}, \mathrm{br}) \end{aligned}$ | $\begin{aligned} & 7.43(\mathrm{~s}, 4 \mathrm{H}), 3.41(\mathrm{~s}, 4 \mathrm{H}), \\ & 3.30(\mathrm{~m}, 4 \mathrm{H}), 3.07(\mathrm{~s}, 6 \mathrm{H}), 2.79(\mathrm{~m}, 4 \mathrm{H}) \end{aligned}$ | 1220 (1216) |



Fig. 1. The molecular structure of $\left.\mathrm{Ru}_{8} \mathrm{ClCO}\right)_{12}\left(7^{6}-\mathrm{C}_{8} \mathrm{H}_{6}\right)\left(\mu_{3^{-}}\right.$ $\Gamma_{2} \mathrm{Me}_{2}$ ) 1 in the solid state The $C$ atoms of the CO gemps henr the same labelling as the corresponding $O$ atoms.
ing site would have seemed likely, and followed the pattern established for other simpler arenes [11].

## 2.I. The molecular structure of clusters 1, 3, 4 and 5 in the solid state

The molecular structures of the species $1,3,4$ and 5 are shown in Figs. 1-4 respectively. Relevant bond distances for compounds 1,3 and 4 are listed in Table


Fig. 2. The molecular structure of $\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{12}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}_{2^{-}}\right.$ $1,3)\left(\mu_{3}, \mathrm{C}_{2} \mathrm{Me}_{2}\right) 3$ in the solid state. The C atoms of the CO groups bear the sime labelling as the corresponding O atoms.


Fig. 3. The molecular suruciure of $\mathrm{Ru}_{6} \mathrm{C}\left(\mathrm{CO}_{12}\left(\mathrm{~T}^{2}-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Me}_{3}-\right.\right.$ $\left.1.3,5)_{\mu_{3}} \mathrm{C}_{2} \mathrm{Me}_{2}\right) 4$ in the solid stare. The C atoms of the CO groups bear the same labelling as the conrespunding $O$ aroms.
2. and those for $\mathbf{5}$ are listed in Table 3. The metal core of all the compounds comprises an octahedron encapsulating a carbido atom. In keeping with other $\mathrm{Ru}_{\mathbf{5}} \mathrm{C}$ species carrying a ligand which replaces all the carbonyl ligands on one metal atom, the Ru-C distance to this metal atom is shonter than the others. In the cases reported here, the $\mathrm{Ru}-\mathrm{C}$ distance for the Ru atom interacting with the ring is. in structures 1. 3 and 4, shorter than the average Ru-C bond length of those remaining [1.956(5) vs. $2.051(6) \AA$ in $1 ; 1.963(6)$ vs.


Fig. 4. The molecular structure of $\mathrm{Ru}_{5} \mathrm{ClCO}_{12}\left(\mu_{3}-\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{X}_{\mu_{3}}\right.$ $\left.\mathrm{C}_{2} \mathrm{Me}_{2}\right) 5$ in the solid stare. The C atoms of the CO groups bear the some labelling as the cormesponding $O$ atoms.

Taicle 2
Relevanr bond lengths ( $\AA$ ) and angles $\left(^{\circ}\right.$ ) for compounds 1. 3 and 4

| Rư 1)-Rux 3 ) | $2.8667(6)$ | $2.8852(6)$ | 2.8792 (6) |
| :---: | :---: | :---: | :---: |
| $R u(1)-R u(4)$ | $2.8734(6)$ | 2.8636(6) | $2.8629(6)$ |
| $\mathrm{Ru}(1)-\mathrm{Ru}(5)$ | $2.8785(6)$ | $2.8476(6)$ | $2.8985(6)$ |
| Rư(1)-Ru(6) | $2.874646)$ | 2.8876(6) | 28607(6) |
| $\operatorname{Ru}(2)-\operatorname{Ru}(3)$ | 2.9384(6) | $2.9118(6)$ | $29275(6)$ |
| Ru(2)-Ru(4) | $2.8762(6)$ | $2.9388(6)$ | $2.9289(6)$ |
| $\operatorname{Ru}(2)-\operatorname{Ru}(5)$ | $2.7881(6)$ | 2.7942(6) | $2.7607(6)$ |
| Ru(2)-Re(6) | $2.8112(6)$ | $2.7764(6)$ | $2.7957(5)$ |
| $\operatorname{Ru}(3)-\mathrm{Ru}(4)$ | $2.8534(6)$ | $2.8301(6)$ | $2.8553(6)$ |
| Ru(3)-Ru(6) | $2.9740(6)$ | 2.9728(6) | $2.9760(6)$ |
| Ru(4)-Ru(5) | $3.0132(6)$ | 2.9521(6) | $2.9216(6)$ |
| Ru(5)-Ru(6) | $2.7677(6)$ | $2.7949(6)$ | $2.8138(6)$ |
| Ru(1)-C | 1.956(5) | 1.963(6) | 1.956(5) |
| Ru(2)-C | 2.1339(5) | $2.053(6)$ | $2.059(5)$ |
| Ru(3)-C | $2.030(6)$ | $2.057(6)$ | $2.010(5)$ |
| Ru(4)-C | 2.061(6) | $2.019(6)$ | $2.061(5)$ |
| Ru(5)-C | $2.09096)$ | 2019 (6) | $2.089(5)$ |
| Ru(6)-C | $2.035(6)$ | $2.078(6)$ | $2.027(5)$ |
| Ru(5)-C(2) | $2.180(5)$ | 2.054(6) | $2.174(5)$ |
| Ru(6)-C(2) | 2.076 (5) | $2.182(6)$ | $2.064(6)$ |
| Ru(2) C(3) | 2.069(5) | $2.067(5)$ | $2.080(6)$ |
| Ru(5)-C(3) | $2.182(5)$ |  | $2.195(6)$ |
| Ruf 6 - $\mathrm{C}(3)$ |  | $2.198(6)$ |  |
| Ru(1)-C(5) | 2.215(5) | 2.210(6) | 2.264(6) |
| $R u(1)-C(6)$ | $2.219(6)$ | 2.263 (6) | $2.233(6)$ |
| Ru(1)-C(7) | $2.234(6)$ | $2.238(6)$ | $2.246(6)$ |
| Ru(1)-C(8) | $2.209(6)$ | $2.190(6)$ | $2.205(6)$ |
| Ru(1)-C(9) | 2.216(6) | $2.231(5)$ | 2,251(6) |
| Ru(i)-C(10) | $2.241(6)$ | $2.274(6)$ | $2.262(6)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)$ | 1.501(7) | 1.511(8) | 1.490(8) |
| C(2)-C(3) | 1.40077) | 1.395(8) | 1.394(8) |
| C(3)-C(4) | $1.499(8)$ | 1.502(8) | 1.494(8) |
| C(5)-C(6) | $1.412(9)$ | $1.412(8)$ | 1.42(1) |
| C(5)-C(10) | $1.387(9)$ | $1.420(8)$ | 1.41(1) |
| $C(6)-C(7)$ | 1.406(9) | $1.416(8)$ | 1.37(1) |
| $\mathrm{C}(7)-\mathrm{C}(8)$ | $1.412(9)$ | $1.405(9)$ | 1.43(1) |
| C(8)-C(9) | 1.405(9) | 1.417(9) | 1.39(1) |
| $C(9)-C(10)$ | 1.413(9) | 1.410(8) | 1.40199) |
| $C(6)-C(11)$ |  | $1.507(8)$ |  |
| $C(10)-C(12)$ |  | $1.501(8)$ |  |
| $C(5)-C(11)$ |  |  | 1.50(1) |
| C(7)-C(12) |  |  | $1.50(1)$ |
| C(9)-C(13) |  |  | $1.517(9)$ |
| C(100)-CL(100) |  |  | $1.738(7)$ |
| C(100)-CL(101) |  |  | 1.7676) |
| mean Ru-Cco | $1.896(7)$ | 1.896(6) | $1.892(7)$ |
| mean $\mathrm{C}-\mathrm{O}$ | 1.143(7) | 1.14048) | $1.140(8)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | 124.0.5) | 124.7(5) | 124.5(5) |
| $C(2)-C(3)-C(4)$ | 124.1(5) | $123.3(5)$ | 124.8(5) |
| C(6)-C(5)-C(10) | $120.7(5)$ | 122.6(5) | $118.4(6)$ |
| $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$ | $120.2(6)$ | 117.7(5) | 122.1(6) |
| $C(6)-C(7)-C(8)$ | 119.3 (6) | 120.9(6) | $118.1(6)$ |
| $C(7)-C(8)-C(9)$ | 119.8(5) | 120.1(5) | $121.3(6)$ |
| $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$ | 120.8(6) | 120.5(5) | $119.1(6)$ |
| $\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(9)$ | $119.2(6)$ | 117.9(5) | 120.8(6) |
| $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(11)$ |  | 122.2(5) |  |
| $\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(11)$ |  | $120.1(5)$ |  |
| $\mathrm{C}(5)-\mathrm{C}(10)-\mathrm{C}(12)$ |  | $121.3(5)$ |  |
| $C(9)-\mathrm{C}(10)-\mathrm{C}(12)$ |  | $126.8(5)$ |  |
| $C(6)-C(5)-C(11)$ |  |  | 12906(7) |

Table 2 (continued)

| $C(10)-C(5)-C(11)$ | $121.3(7)$ |
| :--- | :--- |
| $C(6)-C(7)-C(12)$ | $120.7(7)$ |
| $C(8)-C(7)-C(12)$ | $121.1(7)$ |
| $C(8)-C(9)-C(13)$ | $120.7(6)$ |
| $C(10)-C(9)-C(13)$ | $120.2(6)$ |
| $C 1(100)-C(100)-C 1(101)$ | $112.4(4)$ |

$2.045(6) \AA$ in 3 ; $1.956(5)$ vs. $2.049(5) \AA$ in 4]. This is consistent with the arene ligand, which formally replaces a tricarbonyl unit on the metal, being a poorer $\pi$ acceptor than the carbonyls, therefore necessitating an electronic compensatory effect in which the Ru-carbido bond distance is contracted. In 5, where the arene ligand

Tahle 3
Relevant bond discances ( $\AA$ ) and angles ( ${ }^{\circ}$ ) for compound 5. All $C_{n}$ rings (including the toluene solvent $\mathrm{C}_{6}$ ring) were treated as rigid hexagons with $d(C-C) 1.39 \AA$

| $\mathrm{Ru}(\mathrm{t})-\mathrm{Ru}(2)$ | $2.816(4)$ | $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | 123(3) |
| :---: | :---: | :---: | :---: |
| $\mathrm{Ru}(1)-\mathrm{Ru}(3)$ | $2.787(4)$ | $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ | 119(3) |
| $\mathrm{Ru}(1)-\mathrm{Ru}(4)$ | $2.898(4)$ |  |  |
| Ru(1)-Ru(5) | $2.996(4)$ | $\mathrm{C}(71)-\mathrm{C}(72)-\mathrm{C}(84)$ | 116.5(7) |
| $\mathrm{Ru}(2)-\mathrm{Ru}(3)$ | 2.773 (3) | $\mathrm{C}(73)-\mathrm{C}(72)-\mathrm{C}(84)$ | 117.1(7) |
| Ru(2)-Ru(5) | 2.939(5) | $\mathrm{C}(70)-\mathrm{C}(75)-\mathrm{C}(82)$ | 117.1(6) |
| Ru(2)-Ru(6) | 2.9274) | C(74)-C(75)-C(82) | 116.1(7) |
| Ru(3)-Ru(4) | $2.950(4)$ | C (77)-C(78)-C(85) | 117.5(7) |
| Ru(3)-Ru(6) | $2.895(4)$ | $\mathrm{C}(79)-\mathrm{C}(78)-\mathrm{C}(85)$ | 116.3(7) |
| Ru(4)-Ru(5) | 2.892(3) | $\mathrm{C}(76)-\mathrm{C}(81)-\mathrm{C}(83)$ | $115.9(7)$ |
| Ru(4)-Ruf6) | $2.818(4)$ | $\mathrm{C}(80)-\mathrm{C}(81)-\mathrm{C}(83)$ | 117.5(7) |
| Ru(5)-Ru(6) | $2.904(4)$ | $\begin{aligned} & C(75)-C(82)-C(83) \\ & C(81)-C(83)-C(82) \end{aligned}$ | $\begin{aligned} & 111.7(8) \\ & 111.9(8) \end{aligned}$ |
| Ru(1)-C | 1.96(5) | $\mathrm{C}(72)-\mathrm{C}(84)-\mathrm{C}(85)$ | 112.648) |
| Ru(2)-C | 2.3615) | C(78)-C(85)-C(84) | 111.888) |
| Ru(3)-C | $2.23(5)$ |  |  |
| Ru(4)-C | 1.70(5) | $\mathrm{C}(100)-\mathrm{C}(101)-\mathrm{C}(102)$ | 114(2) |
| Ru(5)-C | 1.97(5) | $\mathrm{C}(100)-\mathrm{C}(101)-\mathrm{C}(106)$ | 126(2) |
| Ru(6)-C | 2.17(5) |  |  |
| Ru(1)-C(2) | 2.04(3) |  |  |
| Ru(3)-C(2) | $2.15(3)$ |  |  |
| $\mathrm{Ru}(2)-\mathrm{C}(3)$ | 2.01(3) |  |  |
| Ru(3)-C(3) | $2.18(3)$ |  |  |
| Ru(4)-C(74) | $2.30(2)$ |  |  |
| Ru(4)-C(75) | 2.40(2) |  |  |
| $\mathrm{Ru}(5)-\mathrm{Cl} 72)$ | $2.15(2)$ |  |  |
| $\mathrm{Ru}(6)-\mathrm{C}(70)$ | 2.24(2) |  |  |
| $\mathrm{C}(1)-\mathrm{C}(2)$ | $1.55(5)$ |  |  |
| C(2)-C(3) | 1.46(5) |  |  |
| C(3)-C(4) | 1.52(5) |  |  |
| $\mathrm{C}(72)-\mathrm{C}(84)$ | 1.61(1) |  |  |
| C(75)-C(R2) | $1.61(1)$ |  |  |
| C(78)-C(45) | 1.60(1) |  |  |
| C(81)-C(83) | 1.60 (1) |  |  |
| C(82)-C(83) | $1.5331)$ |  |  |
| $\mathrm{C}(84)-\mathrm{C}(85)$ | $1.53(1)$ |  |  |
| C(100)-C(101) | 1.51(2) |  |  |
| $\text { mean } \mathrm{Ru}-\mathrm{C}_{\mathrm{Cu}}$ | 1.89(3) |  |  |
| mean $\mathrm{C}-\mathrm{O}$ | $1.15(4)$ |  |  |



Fig. 5. Projection of the [2.2]paracylophane coordination plane in $\mathbf{5}$ showing the deviation "rom the eclipsing of the $\mathrm{C}=\mathrm{C}$ midpoints over the Ru atoms. The remaining atoms of the cluster have been omitted for clarity. Black C atoms are those connecred to the allphatic thains.
replaces a CO ligand on each of three different Ru atoms about a triangular face, no displacement of the interstitial carbon atom in the direction of the metal face
is noted; a short distance is observed between the carbide and Ru(4), but this value has to be taken with caution due to the low quality of the data. In each stricture the Ru-Ru bond lengths corresponding to the edges involved in the coordination of the alkyne fragment are shorter by about 0.1 A with respect to the other Ru-Ru distances. Whether this is an effect of the steric constraints imposed by the $\mu_{3}$-bridging ligand on the flexible $\mathrm{Ru}-\mathrm{Ru}$ vectors or has electronic origins is not clear.

The coordination of the alkyne ligand to the cluster face involves the $\mu_{3}$ bonding mode which is commonly observed in systems of this type and comprises one $\pi$ interaction from the unsaturated bond to one Ru atom and two $\sigma$ bonds to the remaining Ru aroms of the face. As usual, this results in an elongation of the $\mathrm{C}=\mathrm{C}$ bond, ranging from $1.394(8)-1.400(7) \AA$ in 1, 3 and 4 and with a value of $1.46(5) \AA$ in 5 . The elongation of the $\mathbf{C}=\mathbf{C}$ bond is accompanied by bending of the methyl groups away from the cluster unit, with angles ranging from 123.3(5)-124.8(5) in 1, 3 and 4 and angles of 123(3) and $119(3)^{\circ}$ in 5. All the carbonyl ligands in structures 1, 3. 4 and 5 are terminally bound. The CO envelopes in clusters 1, 3 and 4 are very similar, although small conformational changes can be observed depending on the number of substituents on the rings.


Fig. 6. View down the b-axis in crystalline 1, showing the most relevant $\mathbf{C - H} \cdots \mathrm{O}_{\mathrm{C}}$ hydrogen bonding interactions ( $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ distances <2.70 $\AA$ ).


Fig. 7. View down the $a$-axis in crystalline 4 , showing the most relevant $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding interactions ( $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ distances (2.70 Å).

In 5, the [2.2]paracyclophane ligand adopts a $\mu_{3}$ bonding mode. A similar bonding arrangement bas been observed for the majority of [2.2]paracyclophane clusters prepared to date [14,15]. The marked tendency for this ligand to adopt a face-bridging coordination mode compared with other arenes is apparent from the arene derivatives of the hexaruthenium carbido cluster $\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{14}$ (arene), in which the arene bonds in the $\boldsymbol{\eta}^{6}$ mode [9].

In comparison with other facially coordinated sixmembered rings, the midpoints of alternating $\mathrm{C}-\mathrm{C}$ bonds in the coordinated ring of the [2.2]paracyclophane ligand are, to first approximation, eclipsed over the three Ru atoms. On close inspection, the coordinated ring shows a certain degree of torsion with respect to the underlying $\mathrm{Ru}_{3}$ triangle (see Fig. 5), accompanied by a Ru-C,ang) distribution spread over a wide range of distances. The deviation from exact eclipsing can be viewed as the effect of the ligand rotation by $15^{\circ}$ around an axis perpendicular to the $\mathrm{Ru}(4)-\mathrm{Ru}(5)-\mathrm{Ru}(6)$ plane and passing through Ru(4). The two bridgehead C atoms lie above the plane of the remaining fowr. Since NMR spectroscopy shows that the ligand is free to rotate in solution at ambient temperature, the confomational flexibility observed in the solid state is likely to arise from intermolecular forces acting on the [2.2]aracyclophane ligand which protrudes from the CO envelope. Deviation from a quasi-eclipsing confor-
mation of the paracyclophane ligand has been observed before [14]. Such variation in the orientation of facecapping benzene ligands, on the contrary, has not been

Table 4
Intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding parameters for crystalline 1. 3. 4 and 5. C-H distances have been normalised to the neutron value of $1.08 \AA: \mathrm{H} \cdots \mathrm{O}$ distances are given in angstroms. $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{H} \cdots \mathrm{O}-\mathrm{C}_{\mathrm{CO}}$ angles in degrees

| Compound | C-H $\cdots \mathrm{O}$ | H $\cdots \mathrm{O}$ | $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ | $\mathrm{H} \cdot \mathrm{O}-\mathrm{C}_{60}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | C.t-HI...052 | 2.53 | 124 | 147 |
|  | C1-H1...06! | 2.40 | 154 | 114 |
|  | C4-H4 . 033 | 2.48 | 128 | 111 |
|  | C6-H6 . 033 | 2.67 | 155 | 126 |
|  | C7-H7 - 021 | 2.62 | 148 | 135 |
|  | C9-H9 . . O62 | 2.65 | 120 | 133 |
| 3 | C1-H1 $\cdots$ O32 | 2.52 | 133 | 160 |
| 4 | C8-H8... 041 | 2.63 | 141 | 156 |
|  | C6-H6... 043 | 2.63 | 159 | 133 |
|  | C12-H12 $\cdots$ O52 | 2.59 | 158 | 150 |
|  | C11-H11 . . O13 | 2.54 | 127 | 111 |
|  | C100-H100 . . $\mathrm{C}^{\text {c } 1}$ | 2.68 | 1.52 | 166 |
|  | C100-H100 $\cdots$ Oil | 2.67 | 138 | 129 |
| 5 | C77-H77... 032 | 2.48 | 147 | 139 |
|  | C71-H71 . . O41 | 2.56 | 15.5 | 140 |
|  | C84-H84 $\cdots$ O62 | 2.50 | 147 | 148 |
|  | C74-H74 $\cdot$ O52 | 2.58 | 149 | 15.5 |
|  | C82-H82 $\cdots 052$ | 2.42 | 163 | 125 |



Fig. 8. Molecules arranged in piles in crystalline 5 along the $a$-axis: the arene clusters are intercalated along the pile by tolueme solvent molecules. on figands have been omitted for clarity
observed, despite the large number of species structurally characterised.

### 2.2. The crystal structures of $1,3,4$ and 5

Previously, it has been noted that bis(arene) derivatives of the hexaruthenium carbido cluster $\mathrm{Ru}_{6} \mathbf{C}(\mathbf{C O})_{14}(\text { arene })_{2}$ exhihit intermolecular graphite-like interactions involving adjacent ring systems [16]. This packing motif has not been observed in the mono(arene) derivatives, where the molecules are usually organised in the crystals in piles, with the arene planes facing a tricarbonyl unit of a neighbouring molecule; a second structural feature also found in these mono(arene) clusters involves the interlocking of the unique bridging carbonyl into the tetragonal cavity on the opposite edge of one of the surrounding molecules [9]. In compounds

1-5 the presence of alkyl substituents and the absence of bridging ligands are responsible for different packing arrangements with respect to those previously observed. The relative orientation of the molecules in the crystal is not casy to rationalise, but it can be seen that intermolecular hydrogen bonding interactions of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ type are abundant (especially in solid 1 and 4, see Figs. 6 and 7 respectively), and contribute to the stabilisation of the crystalline edifice. It is interesting to note that in compound 4 also the hydrogen atoms belonging to the solvent molecule are involved in hydrogen boading interactions (see Fig. 7). Relevant hydrogen bonding parameters are shown in Table 4. A hydrogen bonding network is also present in crystalline 5 , and the relative geometrical parameters are listed in Table 3. The most striking feature of the molecular packing of compound 5 though is the existence of piles of cluster molecules


Fig. 9. Interaolecular C-H ...t interactions (dashed lines) in crystaline $\mathbf{5}$ between $\mathbf{C H}$ gromps belonging oo the uncoordinated ring of [2.2]paracy:lophane and the electron density of the $\pi$ system (represented by a black spot in the geometrical midpoint of the toluene $\mathrm{C}_{6}$ ring) of the toluene molecule: Filled $\mathbf{C}$ atoms represent the paracyclophane $\mathbf{C}_{6}$ rings coordinated to the melal cluster.
along the $a$-axis of the unit cell. As can be seen in Fig. 8 , the cluster molecules are intercalated by toluene solvent molecules, which are placed perpendicular to the direction of the piles. An explanation for this kind of arrangement can be found in a closer inspection of the interaction between the paracyclophane ligands and the toluene molecules. Fig. 9 shows how two opposite $\mathrm{C}-\mathrm{H}$ groups, belonging to the uncoordinated $\mathrm{C}_{6}$ rings of the paracyclophane ligands, interact via $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions of $2.60 \AA$, with the electron density of the $\pi$ system of the toluene $C_{6}$ ring. This is a well known hydrogen bonding interaction in both organic and organometallic systems [17], alchough examples in the organometallic field are not common.

## 3. Experimental

All reactions were carried out using freshly distilled solvents under an atmosphere of nitrogen. Subsequent purification of products was carried out using standard laboratory grade solvents without precautions taken to exclude air. Infrared spectra were recorded on a

Perkin-Elmer 1710 Fourier-Transform instrument. Mass spectra were obtained by positive fast atom bombardment on a Kratos MS50TC. 'H NMR spectra were recorded using a Bruker WM200 spectrometer. The clusters $\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{14}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)$, $\mathrm{Ru} \mathrm{K}_{6} \mathrm{C}(\mathrm{CO})_{14}\left(\eta^{\prime \prime}-\right.$ $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right), \mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{14}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}_{2}-1,3\right)$, $\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{44}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Me}_{3}-1,3,5\right)$ and $\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{1+}\left(\mu_{3}-\right.$ $\mathrm{C}_{16} \mathrm{H}_{16}$ ) were prepared according to literature methods [8,9]. Trimethylamine- N oxide ( $\mathrm{Me}_{3} \mathrm{NO}$ ), but-2-yne ( $\mathrm{C}_{2} \mathrm{Me}_{2}$ ) and cyclohexa-1,3-diene ( $1,3-\mathrm{C}_{6} \mathrm{H}_{4}$ ) were purchased from Aldrich chemicals. $\mathrm{Me}_{3} \mathrm{NO}$ was dried and then sublimed prior to use.
3.1. Reaction of $\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{1+}$ (arene) with $\mathrm{C}_{2} \mathrm{Me}_{2}$ and 2 equir. Me, NO: synhesis of $\mathrm{Ru}_{0} \mathrm{C}(\mathrm{CO})_{2}$ (arene) $\mu_{3} \cdot$ $C_{2} M e_{2} / 1-5$

In a typical reaction the arene cluster $\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{1+}$ (arene) ( 85 mg ) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 50 ml ) and then cooled to $-78^{\circ} \mathrm{C}$. An excess of $\mathrm{C}_{2} \mathrm{Me}_{2}$ ( 1 ml ) was added, followed by the dropwise addition of $\mathrm{Me}_{3} \mathrm{NO}$ ( 2.2 molar equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ over a 5 min period. The solution was allowed to warm to

Table 5
Cryssal data and details of measurements for compounds 1, 3. 4 and 5 at 150 K

|  | 1 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: |
| Formula | $\mathrm{C}_{33} \mathrm{H}_{12} \mathrm{O}_{12} \mathrm{Ru}_{6}$ | $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{12} \mathrm{Ru}_{n}$ | $\mathrm{C}_{27} \mathrm{H}_{211} \mathrm{C}_{12} \mathrm{O}_{12} \mathrm{Ru}_{6}$ | $\mathrm{C}_{10} \mathrm{H}_{31} \mathrm{O}_{12} \mathrm{Ru}_{4}$ |
| Formula weight | 1086.76 | 1114.81 | 1213.77 | 1309.09 |
| Crystal system | orthorhombic | orthorhombic | monoclinic | monerlinic |
| Space group | P2,2,2, | Pra2, | $P 2_{3} / 1$ | $P 2_{1} / 11$ |
| $a$ (A) | 13.020(2) | 14.312(4) | 9.981(3) | $9.784(6)$ |
| $b$ ( ${ }_{\text {A }}$ ) | 13.647(3) | 14.368(4) | 18.419(5) | 26.16 (1) |
| $c(\AA)$ | 15.751(3) | 14.259(4) | 18.363(7) | 16.01615) |
| $\beta\left({ }^{\circ}\right)$ | -- | - | 96.82095) | 97.6611 |
| Volume ( $\dot{A}^{3}$ ) | 2798.8 | 2932.2 | 3352.0 | 4062.24 |
| $Z$ | 4 | 4 | 4 | 4 |
| Calc. density ( $\mathrm{g} \mathrm{cm}^{-3}$ ) | 2.58 | 2.53 | 2.41 | 2.14 |
| $\lambda(\mathrm{MoKa})(\mathrm{A})$ | 0.71073 | 0.71073 | 0.71073 | 0.71073 |
| $\mu(\mathrm{MoK} \alpha)\left(\mathrm{mm}^{-1}\right)$ | 3.16 | 3.01 | 281 | 2.20 |
| Absorption correction | psi-scan | psi-scan | psi-scan | difans |
| (min.-max, transmission) | 0.250-0.298 | 0.299-0.327 | 0.284-0.350 | $\begin{aligned} & \text { (min.-max. correction } \\ & 0.697-1.266 \text { ) } \end{aligned}$ |
|  | 2006.27 | 2070.28 | 2271.34 | 2486.35 |
| Crystal size (mm ${ }^{3}$ ) | $0.30 \times 0.25 \times 0.20$ | $0.31 \times 0.19 \times 0.19$ | $0.50 \times 0.30 \times 0.25$ | $0.58 \times 0.23 \times 0.12$ |
| $\theta$ range ( ${ }^{\circ}$ ) | 2.5-22.25 | 2.5-30.0 | 2.5-22.5 | 2.5-22.5 |
| Index ranges | $-5<6<14$ | $-1<h<20$ | $-10<h<10$ | $-10<h<10$ |
|  | $-14<k<14$ | $-1<k<20$ | $0<1<19$ | $0<k<28$ |
|  | $0<1<16$ | $-1<1<20$ | $0<1<19$ | $0<1<17$ |
| Rellections collected | 3282 | 6761 | 4356 | 5473 |
| Independent reflections | 2064 | 4612 | 4159 | 4362 |
| Independent reflections used in refinement | 1996 | 4338 | 3719 | 2408 |
| Refined parameters | 372 | 390 | 425 | 272 |
| Conventional $R(/>2 \sigma(I))$ | 0.0154 | 0.0272 | 0.0384 | 0.1164 |
| Goodness of fit | 1.145 | 1.126 | 1.662 | 1.187 |

room temperature over 30 min . The solvent was removed in vacuo and the residue purified by TLC eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane ( $1: 4, v / v$ ). The product was extracted together with some starting material. Yields were as follows: $\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{12}\left(\eta^{\mathrm{b}}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\left(\mu_{3}-\mathrm{C}_{2} \mathrm{Me}_{2}\right) 1$ ( $40 \%$ ); $\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{12}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{+} \mathrm{Me}\right)\left(\mu_{3}-\mathrm{C}_{2} \mathrm{Me}_{2}\right) 2(43 \%)$; $\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{12}\left(\eta \eta^{6}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}_{2}-1,3\right)\left(\mu_{3}-\mathrm{C}_{2} \mathrm{Me}_{2}\right) 3$ (32\%); $\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{12}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Me}_{3}-1,3.5\right)\left(\mu_{3}-\mathrm{C}_{2} \mathrm{Me}_{2}\right) 4$ ( $39 \%$ ); $\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{12}\left(\mu_{3}-\mathrm{C}_{16} \mathrm{H}_{16}\right)\left(\mu_{3}-\mathrm{C}_{2} \mathrm{Me}_{2}\right) 5$ (38\%). Spectroscopic data for compounds $\mathbf{1 - 5}$ are listed in Table 1.
3.2. Reaction of $\mathrm{Ru} \mathrm{n}_{\mathrm{n}} \mathrm{C}(\mathrm{CO})_{15}\left(\mu_{3}-\mathrm{C}_{2} \mathrm{Me}_{2}\right.$ ) with 1,3- $\mathrm{C}_{n} \mathrm{H}_{k}$ and 3 equir. $M e_{3} N O$ : synthesis of $R u_{0} C(C O)_{12}\left(\eta^{n}\right.$. $\left.\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{H} \mu_{3}-\mathrm{C}_{2} \mathrm{Me}_{2}\right)$ I

The cluster $\mathrm{Ku}_{6} \mathrm{C}(\mathrm{CO})_{15}\left(\mu_{3} \mathrm{C}_{2} \mathrm{Me}_{2}\right) \quad(75 \mathrm{mg}$. $0.077 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$ and then cooled to $-78^{\circ} \mathrm{C}$. An excess of $1,3-\mathrm{C}_{6} \mathrm{H}_{8}(1 \mathrm{ml})$ was added, followed by the dropwise addition of $\mathrm{Me}_{3} \mathrm{NO}$ ( $16 \mathrm{mg}, 0.206$ molar equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ over a 5 min period. The solution was allowed to warm to room temperature over 30 min . The solvent was removed in vacuo and the residue purified by TLC eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane ( $1: 4, \mathrm{v} / \mathrm{v}$ ). The product was extracted and characterised spectroscopically as $\mathrm{Ru} \mathrm{b}_{6} \mathrm{C}(\mathrm{CO})_{22}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\left(\mu_{3}-\mathrm{C}_{2} \mathrm{Me}_{2}\right) 1(28 \%)$.

### 3.3. Solid state characterisation of 1, 3, 4 and 5

Crystals of 1 and 4 were grown by the slow diffusion of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane layer at $-25^{\circ} \mathrm{C}$. Crystals of 3 were grown from a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane at $-25^{\circ} \mathrm{C}$. Compound 5 was crystallised from the slow evaporation of a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane. Single crystals of 2 were grown by the slow diffusion of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane layer at $-25^{\circ} \mathrm{C}$, while X-ray data was collected; the data and resulting structure is of poor quality and not suitable for publication.

Diffraction data were collected on a Stoë Stadi-4 four-circle diffractometer equipped with an Oxford Cryosystems low temperature device operating at 150 K . The crystal structures of 1, 3, 4 and 5 were solved by direct methods (SIR92 [18] or shelxs [19]) and refined by full-matrix least-squares (crystals [20]). Hydrogen atoms were placed in calculated positions and re-idealised after successive refinement cycles. For 1, 3 and 4 all non-H atoms were refined with anisotropic displacement parameters, but the rather low data quality obtained for $\mathbf{S}$ only allowed the Ru atoms to be so refined; other atoms were refined with common sets of isorupic thermal parameters, phenyl rings being modelled as rigid hexagons. Full cell and refinement data are presented in Table 5.

Crystals of 2 were obtained during this study, and were shown to have unit cell dimensions $a=9.882(7)$, $b=16.671(13), c=36.950(4)$ À, $\beta=91.08(7)^{\circ}$, space
group $P 2_{1} / c$. While analysis of the diffraction data established the chemical formulation as $\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{12}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)\left(\mu_{3}-\mathrm{C}_{2} \mathrm{Me}_{2}\right) \cdot x \mathrm{CH}_{2} \mathrm{Cl}_{2}$, with a structure similar to those of 1,3 and 4 , the very low data quality precluded further description of this structure.

## Acknowledgements

We would like to thank the University of Edinburgh for financial support (RLM) and the Royal Society for a University Research Fellowship (PID). The Minissero dell'Universita' e della Ricerca Scientifica e Tecnologica is also acknowledged (DB, FG, EP).

## References

[I] R.S. Dickson and P.J. Fraser, Adc: Orgowomet. Chems, 12 (1974) 323: E Sappa A. Tiripicchio and P. Braumsecin. Chem Rec., 83 (1983) 203; P.R. Raithby and M.J. Rassles, Ade: Inorg. Chem. Radiorkem., 29 (1985) 169.
[2] D. Braga. P.J. Dyson, F. Grepioni and B.F.G. Johnson, Chem Ret.. 94 (1994) 1585.
[3] M.P. Gomer-Sal, B.F.G. Johnson. I. Lewis, P.R. Raithby and A.H. Wright J. Chem. Soc., Chem. Commur, (1985) 1682; A.J. Blake, P.J. Dyson. B.F.G. Johnson, CM. Martin, J.G.M. Naim, E. Parisini and I. Lewis, J. Cheme Soc., Dafton Trans.. (1993) 981.
[4] P.J. Dyson, B.F.G. Johnson, J. Lewis, M. Martinelli, D. Braga and F. Grepioni, J. Am Chem Soc., 115 (1993) 9062.
[5] D. Braga, F. Grepioni, P. Sabatino, P.J. Dyson, B.F.G. Johnsom, J. Lewis, P.J. Bailey, P.R. Raithby and D. Stalke, J. Cheras Sec., Dalton Trans., (1993) 985; P.J. Dyson, B.F.G. Johersonn and D. Braga, Inorg. Chim. Acma.. 222 (1994) 299. D. Bragn. F. Grepioni, E. Parisini, P.J. Dyson, B.F.G. Johnsom, D. Rood D.S. Shepherd. P.J. Bailey and J. Lewis, J. Organownet. Chem,, 462 (1993) 301.
[6] D.B. Brown, P.J. Dyson. B.F.G. Johnson and D. Parker. J. Organomet. Chem., 491 (1995) 189.
[7] D. Braga, M.A. Gallop, F. Grepioni, B.F.G. Johnson, J. Lewis and M. Martinelii, J. Chem 5oc.. Chem Comsmerk, (1990) 53; D. Braga, F. Grepioni, B.F.G. Johnson. E Parisini, M. Martinelli, M.A. Gallop and J. Lewis, J. Chem. Soc., Daltor Trass., (1992) 807.
[8] P.J. Dysorn. B.F.G. Johnson. D. Reed, D. Braga, F. Grepioria and E. Parisini. J. Chem. Sac., Dalfon Trans., (1993) 2817.
[9] D. Braga. F. Grepioni, E. Parisim, PJ. Dyson, A.I. Blake and B.F.G. Johnson, J. Chem Soce., Dalion Trans.., (1993) 2951.
[10] D. Braga, F. Grepioni, C.M. Martin, E Parisini, PJ. Dysonand B.F.G. Johnson, Organometallics. 13 (1994) 2170 .
[11] A.J. Blake, P.J. Dyson, S.L. Ingham, B.F.G. Johnson and C.M. Martin, Orgamornetalles, if (1995) 862.
[12] R.L. Malkors, PJ. Dyson. B.F.G. Johnson and S. Parsons, submitted to Orgumametalics.
[13] B.F.G. Johnson. PJ. Dysion and C.M. Martin, J. Chem Soc., Dalton Trans., (1996) 2395.
[14] PI. Dysan, B.F.G. Johnson, C.M. Martin, A.J. Blake, D. Braga, F. Grepioni and E. Parisini, Organometaflics. 13 (1994) 7113.
[15] AJ. Blake, P.J. Dyson, S.L. Ingham, B.F.G. Johnson and C.M. Martin. Trans. Met. Chem., 20 (1995) 577.
[16] D Bequa. F. Grepioni. B.F.G. Johnson, H. Chen and I. Lewis, J. Chem. Soc., Dahon Trans... (1991) 2559; D. Braga, F. Grepioni. S. Righi. P.J. Dyson. B.F.G. Johnson. P.J. Bailey and J. Lewis, Organometalhes. I/ (1992) 4042.
[17] R. Glaser, P.E. Haney and C.L. Bames, Inorg. Chem., 35 (1996) 1758; G.R. Desiraju and A. Gavezzotti, J. Chem. Soc., Chem. Comusun.. (1989) 621.
[18] A. Allomare, M.C. Burla, M. Camali, G. Cascarano, C. Giacovazzo, A. Guagiiardi and G. Polidori, in preparation.
[19] G.M. Sheldrick, Acta Cnssallogr., A46 (1990) 467.
[20] D.J. Watkins, G.K. Prout and L.J. Pearce, cameron, Chemical Crystallographic Laboratory, University of Oxford, Oxford, 1996.


[^0]:    * Corresponding author.

